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Quantum Confinement and Optical Gaps in Si Nanocrystals
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Quasiparticle gaps, self-energy corrections, exciton Coulomb energies, and optical gaps in Si
guantum dots are calculated from first principles using a real-space pseudopotential method. The
calculations are performed on hydrogen-passivated spherical Si clusters with diameters up to 27.2 A
(~800 Si and H atoms). It is shown that (i) the self-energy correction in quantum dots is enhanced
substantially compared to bulk, and is not size independent as implicitly assumed in all semiempirical
calculations, and (ii) quantum confinement and reduced electronic screening result in appreciable
excitonic Coulomb energies. Calculated optical gaps are in very good agreement with absorption data.
[S0031-9007(97)03934-3]
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Optical properties of semiconductor quantum structureshere have been two major bottlenecks for the application
with reduced dimensions have been the subject of mangf first principles studies to quantum dots. First, accurate
experimental and theoretical studies. One of the moab initio calculations have so far been limited, due to large
tivations for these studies has been stimulated by theomputational demand, to small systems which usually do
discovery of visible luminescence from porous Si [1]. Al- not correspond to the sizes of the nanoparticles for which
though there is still debate on the origin of photolumines-experimental data are available. Second, even accurate
cence, there is considerable experimental and theoreticab initio calculations performed within the local density
evidence for the role of quantum confinement (QC) inapproximation (LDA) would suffer from the well-known
producing this phenomenon [2]. However, the agreemeninderestimate of the band gap [9]. In order to remedy this
among existing theoretical calculations with experimen{problem, a few self-consistent density-functional-theory-
tal absorption and photoluminescence data is fair, at bedbased calculations within LDA have been performed where
with a common finding of an inverse correlation of the a size-independent self-energy correction of 0.68 eV (bulk
optical gap with the nanoparticle size. While this findinglimit) has been added [10]. This approach is, in principle,
provides an important piece of evidence for QC modelsnot so different from a semiempirical calculation, and does
a complete microscopic understanding of the size depemot address the effects of QC on the self-energy.
dence of optical excitations in Si hanocrystals and porous The first bottleneck, i.e., the large computational de-
Si is yet to be achieved. The aim of this Letter is to inves-mand required in modeling quantum dots from first prin-
tigate the size dependence of optical gaps in Si nanocrysiples, can be overcome by straightforward application
tallites through large scale first principles calculations ofof new electronic structure algorithms, such as real-space
guasiparticle gaps and exciton Coulomb energies, and tmethods [11,12], to these confined systems using mas-
compare them with available calculations and experimensively parallel computational platforms. As for the sec-
tal absorption data. ond problem, i.e., the underestimate of the band gap due

Almost all existing theoretical calculations on Si quan-to LDA, while sophisticated formalisms like the GW ap-
tum dots are of a semiempirical nature [3—7]. Such arproximation [9] would be quite accurate, the confined na-
approach postulates the transferability of bulk electronidure of the quantum dots makes it possible for a simpler
interaction parameters to the nanocrystalline environmenformulation of the fundamental quasiparticle gaps. For
The validity of this assumption is not clear, and has beemn n-electron system, the quasiparticle gap can be ex-
guestioned in recent studies [8]. More specifically, QC-pressed in terms of the ground state total energiesthe
induced changes in self-energy corrections, which may aftn + 1)-, (n — 1)-, andn-electron systems as
fect the magnitude of the optical gaps significantly, are
neglected in semiempirical calculations by implicitly as- e = E(n + 1) + E(n — 1) = 2E(n) (1)
suming a “size-independent” correction which corresponds — ghand | 3 )
to that of the bulk. It naturally follows that a reliable way §
to investigate the optical gaps of quantum dots would be tavhere sga“d is the usual single-particle LDA band gap
performab initio calculations on these systems. However,(defined as the eigenvalue difference between the lowest
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unoccupied and the highest occupied orbitals), anis

the self-energy correction. Therefore, the calculation of
the quasiparticle gap requires the self-consistent solutions
of three different charge configurations of each quantum
dot. The computational demand of this approach can
be reduced significantly by using the wave functions of
the neutral cluster calculation to extract very good initial
charge densities for the self-consistent calculations of the
charged systems. With a real-space method, it is also
quite straightforward to calculate the total energies for
these charged systemB(r + 1) andE(n — 1)] without

the use of a compensating background charge that would
be necessary for a supercell geometry.

Our calculations were performed in real space using
the higher-order finite-difference pseudopotential method
[11]. Quantum dots were modeled by spherical bulk-FIG. 1. Calculated quasiparticlé>j and LDA band gap$+),
terminated Si clusters that are passivated by hydrogeand self-energy correctionlj as a function of the quantum

atoms at the boundaries. We used Troullier-Martins pset{iot diameterd (in A). The solid lines are power-law fits to

. - he calculated data approaching the corresponding bulk limits.
dppotennals [13] n nonlocal [14] f"md local forms for The horizontal dotted line is the bulk limit of the self-energy
Si and H, respectively. All calculations were performedcorrection (0.68 eV).

within LDA using the exchange-correlation functional of
Ceperley and Alder as parametrized by Perdew and Zung%r the quantum dots studied in this work, and will there-

[sj;c?g\ W-g;eelj('n::}'ge%nﬁrgilolijgﬁtglrgizglfifsrtehlce r?(;(gre:éfore be neglected. QC in nanostructures enhances the bare
p P 9 p xciton Coulomb interaction, and also reduces electronic

ing i, chosen to be 0.9 a.u. No change in the calculate§ : .
creening, so that the exciton Coulomb eneFgy,, can
gap values was found upon decreasintp 0.75 a.u. The be comparable to the quasiparticle gap. Therefore, in or-

\év;\aeoggﬁlwsixevrveasreﬁler:; t7o5v2ndsha3vtgsﬁgrﬁ tSh%hIZrS'ger to extract the optical gaps, this term needs to be cal-
' R y ulated accurately.

shell of Si atoms. The Hartree potential was solved by dis- N
cretizing the Poisson equation and matching the boundaré/ A crude, yet commonly used, approximation fgou

: ) . : omes from the effective mass approximation (EMA),
32;es?:;a\lvmtg;gi}aﬁfrﬁoﬁﬂzﬁfﬁjg'?[gnlsgo dnegfeglﬁn(;hg;gewhich assumes an infinite potential barrier at the boundary

the size of the system. All calculations were erformedmc the quantum dot and envelope wave functions for
y : P a noninteracting electron-hole pair in the forg(r) ~

on a Cray C-90 computer, except for the two largest cases . . o . .
(ShosH17, and SixsHa76), which were run in parallel on a 7,[8'”(.27”/.?)' This approximation forEcou yields (in
Cray-T3E machine. atomic units)

Size dependence of the quasiparticle and LDA band 3.572

gaps, and self-energy corrections are shown in Fig. 1. Ecou = ed ’ ®)

Both gap values and self-energy corrections are enhanceghere ¢ is the dielectric constant of the quantum dot

substantially with respect to bulk values, and are in-[16]. EMA, though commonly used, cannot be expected
versely proportional to the dot diametéras a result of = tq yjeld accurate exciton Coulomb energies, since in this

band band . . . .

QC. Specifically,es (d) — &gbui, £,"°(d) — &gbulk:  approximation the microscopic features of the electron-
andX(d) — S scale agi~'2, 47!, andd ™', respec-  hole wave functions inside the quantum dot are neglected,
tively. The quasiparticle gaps shown in Fig. 1 are sig-and the wave functions are constrained to vanish abruptly
nificantly higher compared to the gap values obtained iutside the quantum dots, instead of decaying relatively
earlier semiempirical calculations [3—6]. The main rea-siowly into the vacuum. We have, therefore, calculated
son for this is the significant enhancement of electron selfz._ , directly usingab initio pseudo—wave functions and

energies due to QC, which cannot be properly taken intehe correct expression for this term, which can be written
account in semiempirical approaches. The dotted horizorgg

tal line in Fig. 1 shows the self-energy correction to the
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LDA band gap in bulk Si, and it can be seen that even for Ecoul = LAWY drydr;. 4)

a quantum dot with/ = 20 A, the self-energy correction e(ri,m) [ri — 1o

is twice the bulk value of 0.68 eV. In this expressionys, and ¢, are the electron and hole

For direct comparison with experimental absorptionwave functions, respectively, andr,r;) is the micro-
data, exciton Coulomb and exchange-correlation energiexopic screening dielectric response function. First, we
need to be included. Compared to the Coulomb energysete = 1, and calculated the unscreenggd,,;. The re-
exciton exchange-correlation energies are much smalleults are shown in Fig. 2 along with the predictions of
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the EMA and recent similar calculations of Francheschettdielectric constant of the quantum dot. In earlier studies,
and Zunger [17] using semiempirical pseudopotentialsthe dielectric response functioa(r;,r,) was approxi-
Our calculations for the unscreened exciton Coulombmated by the static dielectric constant of either the bulk or
energy are in quite good agreement with the semiemthe particular quantum dot [which corresponds to putting
pirical calculations of Ref. [17], both predictilgmaller €' outside the integral in Eq. (4)]. However, because
Coulomb energies and a softer power-law decay comef the wave-vector dependence of the dielectric function
pared to EMA. Fitting the calculated data to a power lawand QC, screening will have different effects at different
of the diameter ad %, we finda = 0.7, in good agree- length scales. For example, whep andr; in Eq. (4)
ment with the semiempirical result of = 0.8. This fig- are very close to each other, there will be practically no
ure also shows, as mentioned earlier, that the unscreenedreening, an& = 1. Since both the hole and electron
exciton Coulomb energies, although overestimated by thevave functions are well localized towards the center of
EMA, are comparable to the quasiparticle gaps. Fothe quantum dot, the screening will be reduced signifi-
example, for SisH,7, with d = 22.4 A, the unscreened cantly, resulting in larger Coulomb energies compared
Ecoun = 1.8 eV, while the calculatedgp = 2.94 eV. to the case of using a single dielectric constant for all
An accurate calculation oEc., in Eq. (4) requires distances.
the microscopic calculation of dielectric response The resulting optical gapss’ = ei’ — Ecou along
function e(r;,r;). However, such a calculation for a with the quasiparticle gaps and experimental absorption
guantum dot is quite cumbersome due to the large condata from Si nanocrystallites [20] are shown in Fig. 3.
putational demand. Instead, we proceeded as followsAlthough the calculated quasiparticle gaps ar@.4 to
First, we calculated the polarizabilities of a few selected).6 eV larger than the experimental absorption data, the
guantum dots using a finite-field method, and the staticalculated optical gaps are in excellent agreement with
dielectric constants for these dots were obtained withirexperiment. At this point, an interesting observation
the dielectric sphere model [18]. Next, we fitted thecan be made about the good agreement of previous
calculated static dielectric constants as a function of theemiempirical calculations with experiment [2,3,5]. In the
guantum dot radius to a generalized Penn model [19] to above semiempirical approaches, it is the underestimate
obtain e(r) =1+ (11.4 — 1)/[1 + (9.7/r)'*], where of boththe quasiparticle gapand the exciton Coulomb
11.4 is the bulk static dielectric constant of Si ands  energies (through the use of a static dielectric constant
measured in A. The fitting parameters to the generalizedf either the bulk or the quantum dot), that puts the
Penn model agree quite well with the parameters ofalculated values in good agreement with experiment.
Ref. [8]. Finally, we used this expression fefr) by = As a matter of fact, the bare gaps of Refs. [3] and
approximating e(r;,r2) = €(r = [r; — rz]). We note [5] without the exciton Coulomb energies are in better
that this formalism for the dielectric response function,agreement with the experiment. Our present results
while approximate, treats the effective screening morelemonstrate that (i) the quasiparticle gaps in Si quantum
accurately in calculatingEc,, than using the static dots are actually higher than previously thought, and
(ii) the exciton Coulomb energies, because of the wave
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FIG. 2. Unscreened exciton Coulomb energies as a functioklG. 3. Calculated quasiparticle gaps (dotted line), optical
of the quantum dot diameter (in A) calculated by (i) effective  gaps (shown byx fitted to the solid line), and experimental
mass approximation (dotted line), (ii) direct semiempirical absorption data from Si nanocrystallite§] (and < from
pseudopotential calculationg\(from Ref. [17]), and (iii) direct Ref. [20]) as a function of the guantum dot diameter(in

ab initio pseudopotential calculation&lf as explained in the A). The two sets of experimental dat& @nd) differ by the
text. The solid lines are power-law fits to the calculated data. method to estimate the nanocrystalline size.
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